login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046432
2 steps needed to reach a prime under "Sum of digits raised to its digits' powers" procedure.
3
3, 69, 96, 123, 132, 203, 213, 222, 230, 231, 302, 312, 320, 321, 334, 343, 433, 447, 456, 465, 469, 474, 477, 496, 546, 564, 566, 577, 645, 649, 654, 656, 665, 689, 694, 698, 744, 747, 757, 774, 775, 777, 869, 896, 946, 964, 968, 986, 1022, 1038, 1048
OFFSET
1,1
COMMENTS
The sequence is infinite because the numbers of the form m = 111...111 with 10^(p-1) digits, p prime, are terms. - Marius A. Burtea, Oct 27 2019
LINKS
EXAMPLE
a(n)=69 -> 6^6 + 9^9 = 387467145 is composite but 3^3 + 8^8 + 7^7 + 4^4 + 6^6 + 7^7 + 1^1 + 4^4 + 5^5 = 18474623 is prime.
MATHEMATICA
sdp[n_]:=Module[{idn=IntegerDigits[n]/.{0->1}}, Total[#^#&/@idn]]; Select[ Range[ 1100], Rest[PrimeQ[NestList[sdp, #, 2]]]=={False, True}&] (* Harvey P. Dale, Nov 10 2011 *)
PROG
(Magma) f:=func<n| &+[a[i]^a[i]:i in [1..#a]] where a is Intseq(n) >; [k:k in [1..1050] |not IsPrime(f(k)) and IsPrime(f(f(k))) ]; // Marius A. Burtea, Oct 27 2019
CROSSREFS
Cf. A046431.
Sequence in context: A279491 A264700 A124181 * A232326 A270869 A241222
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jul 15 1998
EXTENSIONS
Offset changed to 1 by Georg Fischer, Oct 27 2019
STATUS
approved