login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A046429
Numbers requiring 9 steps to reach a prime under the prime factor concatenation procedure.
1
40, 44, 81, 224, 265, 395, 422, 462, 640, 698, 818, 972, 1010, 1032, 1070, 1089, 1174, 1206, 1280, 1336, 1446, 1518, 1520, 1528, 1581, 1662, 1728, 1814, 1816, 1849, 1852, 1853, 1856, 1892, 1927, 1932, 1960, 2032, 2060, 2061, 2090, 2098, 2202, 2212, 2249
OFFSET
1,1
LINKS
Patrick De Geest, Home Primes
EXAMPLE
698 is in the sequence as 698 -> 2349 -> 333329 -> 2571297 -> 3857099 -> 31312323 -> 33771937101 -> 379437170413 -> 73124171910091 -> 374148203145623. Only after the ninth iteration we reach a prime. - David A. Corneth, Oct 15 2019
PROG
(PARI) is(n, k) = if(isprime(n), return(0)); for(i = 1, k - 1, n = concatelements(primesvector(n)); if(isprime(n), return(0))); n = concatelements(primesvector(n)); isprime(n)
concatelements(v) = my(s = ""); for(i = 1, #v, s = concat(s, v[i])); eval(s)
primesvector(n) = my(f = factor(n), res = vector(vecsum(f[, 2])), t = 0); for(i = 1, #f~, for(j = 1, f[i, 2], t++; res[t] = f[i, 1])); res \\ David A. Corneth, Oct 15 2019
CROSSREFS
Sequence in context: A095513 A095505 A095497 * A346804 A364997 A046796
KEYWORD
nonn,base
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
Extended and edited by Charles R Greathouse IV, Apr 28 2010
STATUS
approved