OFFSET
1,1
COMMENTS
Subset of A126706, numbers that are neither squarefree nor prime powers.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Michael De Vlieger, Annotated plot of b(n) = A126706(n), n = 20*(y-1) + x at (x, -y), for x = 1..20 and y = 1..20, thus for n = 1..400. Terms in this sequence are colored black, those in A364999 in blue, in A364998 in gold, and in A361098 in red.
Michael De Vlieger, Plot of b(n), n = 120*(y-1) + x at (x, -y), for x = 1..120 and y = 1..120, thus for n = 1..14400 using the same color scheme as immediately above.
Michael De Vlieger, Plot of b(n), with n = 1016*(y-1) + x at (x, -y), for x = 1..1016 and y = 1..1016, thus showing 1032256 terms. Terms b(n) in this sequence are colored black, else white.
EXAMPLE
b(1) = 12 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30; both exceed 12, thus 12 is in S but not in T.
b(2) = 18 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6 = 30. Indeed, neither is less than 18, hence 18 is not in S but is in T.
b(6) = 36 is not in the sequence since p*r = 3*6 = 18 and q*r = 5*6, and both do not exceed 36, therefore 36 is not in S but is in T.
b(7) = a(1) = 40 since p*r = 5*10 = 50 and q*r = 3*10 = 30. We have both 50 > 40 and 30 < 40, thus 40 is in both S and T, etc.
MATHEMATICA
Select[Select[Range[500], Nor[PrimePowerQ[#], SquareFreeQ[#]] &], Function[{k, f}, Function[{p, q, r}, And[p r > k, q r < k]] @@ {f[[2, 1]], SelectFirst[Prime@ Range[PrimePi[f[[-1, 1]]] + 1], ! Divisible[k, #] &], Times @@ f[[All, 1]]}] @@ {#, FactorInteger[#]} &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Aug 16 2023
STATUS
approved