login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Jordan function J_6(n).
16

%I #53 Jan 17 2024 09:08:32

%S 1,63,728,4032,15624,45864,117648,258048,530712,984312,1771560,

%T 2935296,4826808,7411824,11374272,16515072,24137568,33434856,47045880,

%U 62995968,85647744,111608280,148035888,187858944,244125000,304088904,386889048

%N Jordan function J_6(n).

%C Moebius transform of n^6. - _Enrique Pérez Herrero_, Sep 14 2010

%C a(n) is divisible by 504 = (2^3)*(3^3)*7 = A006863(3) except for n = 1, 2, 3 and 7. See Lugo. - _Peter Bala_, Jan 13 2024

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.

%H Enrique Pérez Herrero, <a href="/A069091/b069091.txt">Table of n, a(n) for n=1..2000</a>

%H Michael Lugo, <a href="http://godplaysdice.blogspot.com/2008/05/little-number-theory-problem.html">A little number theory problem</a> (2008)

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Jordan%27s_totient_function">Jordan's totient function</a>.

%F a(n) = Sum_{d|n} d^6*mu(n/d).

%F Multiplicative with a(p^e) = p^(6e)-p^(6(e-1)).

%F Dirichlet generating function: zeta(s-6)/zeta(s). - _Ralf Stephan_, Jul 04 2013

%F a(n) = n^6*Product_{distinct primes p dividing n} (1-1/p^6). - _Tom Edgar_, Jan 09 2015

%F Sum_{k=1..n} a(k) ~ n^7 / (7*zeta(7)). - _Vaclav Kotesovec_, Feb 07 2019

%F From _Amiram Eldar_, Oct 12 2020: (Start)

%F Limit_{n->oo} (1/n) * Sum_{k=1..n} a(k)/k^6 = 1/zeta(7).

%F Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p^6/(p^6-1)^2) = 1.0175973008... (End)

%F O.g.f.: Sum_{n >= 1} mu(n)*A(x^n)/(1 - x^n)^7 = x + 63*x^2 + 728*x^3 + 4032*x^4 + 15624*x^5 + ..., where A(x) = x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6 is the 6th Eulerian polynomial. See A008292. - _Peter Bala_, Jan 31 2022

%p with(numtheory): seq(add(d^6 * mobius(n/d), d in divisors(n)), n = 1..100); # _Peter Bala_, Jan 13 2024

%t JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/# ]&]/;(n>0)&&IntegerQ[n]

%t A069091[n_IntegerQ]:=JordanTotient[n,6]; (* _Enrique Pérez Herrero_, Sep 14 2010 *)

%t f[p_, e_] := p^(6*e) - p^(6*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 12 2020 *)

%o (PARI) for(n=1,100,print1(sumdiv(n,d,d^6*moebius(n/d)),","))

%Y Cf. A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A007434 (J_2), A059376 (J_3), A059377 (J_4), A059378 (J_5), A069092 - A069095 (J_7 through J_10).

%Y Cf. A065959.

%Y Cf. A013665.

%K easy,nonn,mult

%O 1,2

%A _Benoit Cloitre_, Apr 05 2002