The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294301 Sum of the sixth powers of the parts in the partitions of n into two distinct parts. 5
 0, 0, 65, 730, 4890, 19786, 67171, 180724, 446964, 962780, 1978405, 3703310, 6735950, 11445110, 19092295, 30220776, 47260136, 70866264, 105409929, 151455810, 216455810, 300450370, 415601835, 560651740, 754740700, 994054516, 1307797101, 1687688054, 2177107894 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (1,7,-7,-21,21,35,-35,-35,35,21,-21,-7,7,1,-1). FORMULA a(n) = Sum_{i=1..floor((n-1)/2)} i^6 + (n-i)^6. From Colin Barker, Nov 20 2017: (Start) G.f.: x^3*(65 + 665*x + 3705*x^2 + 10241*x^3 + 19630*x^4 + 23246*x^5 + 19630*x^6 + 10486*x^7 + 3705*x^8 + 721*x^9 + 65*x^10 + x^11) / ((1 - x)^8*(1 + x)^7). a(n) = (n/42 - n^3/6 + n^5/2 - 1/128*(65 + (-1)^n)*n^6 + n^7/7). a(n) = a(n-1) + 7*a(n-2) - 7*a(n-3) - 21*a(n-4) + 21*a(n-5) + 35*a(n-6) - 35*a(n-7) - 35*a(n-8) + 35*a(n-9) + 21*a(n-10) - 21*a(n-11) - 7*a(n-12) + 7*a(n-13) + a(n-14) - a(n-15) for n>15. (End) MATHEMATICA Table[Sum[i^6 + (n - i)^6, {i, Floor[(n-1)/2]}], {n, 40}] PROG (PARI) a(n) = sum(i=1, (n-1)\2, i^6 + (n-i)^6); \\ Michel Marcus, Nov 08 2017 (PARI) concat(vector(2), Vec(x^3*(65 + 665*x + 3705*x^2 + 10241*x^3 + 19630*x^4 + 23246*x^5 + 19630*x^6 + 10486*x^7 + 3705*x^8 + 721*x^9 + 65*x^10 + x^11) / ((1 - x)^8*(1 + x)^7) + O(x^40))) \\ Colin Barker, Nov 20 2017 CROSSREFS Cf. A294286, A294287, A294288, A294300. Sequence in context: A351301 A017675 A013954 * A343508 A116277 A220389 Adjacent sequences: A294298 A294299 A294300 * A294302 A294303 A294304 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Oct 27 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 30 19:10 EDT 2023. Contains 361622 sequences. (Running on oeis4.)