login
A294298
Sum of products of terms in all partitions of 3*n into powers of 3.
3
1, 4, 13, 49, 157, 481, 1534, 4693, 14170, 43357, 130918, 393601, 1188454, 3573013, 10726690, 32248957, 96815758, 290516161, 872169223, 2617128409, 7852005967, 23561605318, 70690403371, 212076797530, 636280680100, 1908892327810, 5726727270940, 17180634420931
OFFSET
0,2
LINKS
FORMULA
a(n) = [x^(3*n)] Product_{k>=0} 1/(1 - 3^k*x^(3^k)). - Ilya Gutkovskiy, Sep 10 2018
a(n) ~ c * 3^n, where c = 2.2530906593645919365992433370928351696108819534655299832797806149219665... - Vaclav Kotesovec, Jun 18 2019
EXAMPLE
n | partitions of 3*n into powers of 3 | a(n)
----------------------------------------------------------------------------------
1 | 3 , 1+1+1 | 3+1 = 4.
2 | 3+3, 3+1+1+1, 1+1+1+1+1+1 | 9+3+1 = 13.
3 | 9 , 3+3+3 , 3+3+1+1+1 , 3+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1 | 9+27+9+3+1 = 49.
MAPLE
b:= proc(n, i, p) option remember; `if`(n=0, p,
`if`(i<1, 0, add(b(n-j*i, i/3, p*i^j), j=0..n/i)))
end:
a:= n-> (t-> b(t, 3^ilog[3](t), 1))(3*n):
seq(a(n), n=0..33); # Alois P. Heinz, Oct 27 2017
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[n == 0, p, If[i < 1, 0, Sum[b[n - j i, i/3, p i^j], {j, 0, n/i}]]];
a[n_] := b[3n, 3^Floor@Log[3, 3n], 1];
a /@ Range[0, 33] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 27 2017
STATUS
approved