login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338862
a(n) is the number of polynomials of degree 2*n over the field GF(2) that have no factors of odd degree.
0
1, 1, 4, 13, 49, 175, 655, 2437, 9208, 34867, 132952, 508621, 1953580, 7524625, 29061835, 112493680, 436330753, 1695388480, 6598016866, 25714222228, 100343852938, 392023844362, 1533182752336, 6001993189687, 23517048084424, 92220047277892, 361906295452669, 1421252193947311
OFFSET
0,3
COMMENTS
a(n) is the number of partitions of n into parts k of A001037(2*k) sorts. - Joerg Arndt, Nov 13 2020
FORMULA
G.f.: 1 / ( Product_{k>=1} (1-x^k)^A001037(2*k) ). - Joerg Arndt, Nov 13 2020
EXAMPLE
For n=2 the a(2) = 4 polynomials are X^4 + X + 1, X^4 + X^2 + 1, X^4 + X^3 + 1, and X^4 + X^3 + X^2 + X + 1. Of these X^4+X^2+1 = (X^2+X+1)^2 while the others are irreducible over GF(2).
MAPLE
f:= proc(d) local P, x, X, count, L, F;
count:= 0;
for x from 2^d+1 to 2^(d+1)-1 by 2 do
L:= convert(x, base, 2);
if convert(L, `+`)::even then next fi;
P:= add(L[i+1]*X^i, i=0..d);
F:= map(t -> t[1], (Factors(P) mod 2)[2]);
if andmap(t -> degree(t)::even, F) then count:= count+1 fi
od:
count
end proc:
seq(f(i), i=2..20, 2);
MATHEMATICA
nn = 50; A001037 =Table[1/n Sum[MoebiusMu[n/d] 2^d, {d, Divisors[n]}], {n, 1, nn}];
Select[CoefficientList[ Series[Product[1/(1 - z^i)^A001037[[i]], {i, 2, nn, 2}], {z, 0, nn}], z], # > 0 &] (* Geoffrey Critzer, Aug 11 2022 *)
PROG
(PARI) b(n)=sumdiv(n, d, moebius(d)*2^(n/d))/n; \\ A001037
N=33; x='x+O('x^N);
Vec( 1 / prod(k=1, N, (1-x^k)^b(2*k) ) )
\\ Joerg Arndt, Nov 13 2020
CROSSREFS
Sequence in context: A294298 A300579 A180007 * A097948 A096971 A149451
KEYWORD
nonn
AUTHOR
Robert Israel, Nov 12 2020
STATUS
approved