login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123097
Triangle read by rows: T(n,k) = binomial(n-2, k-1) + n*binomial(n-1, k-1), 1 <= k <= n, starting with T(1, 1) = 1.
1
1, 3, 2, 4, 7, 3, 5, 14, 13, 4, 6, 23, 33, 21, 5, 7, 34, 66, 64, 31, 6, 8, 47, 115, 150, 110, 43, 7, 9, 62, 183, 300, 295, 174, 57, 8, 10, 79, 273, 539, 665, 525, 259, 73, 9, 11, 98, 388, 896, 1330, 1316, 868, 368, 91, 10, 12, 119, 531, 1404, 2436, 2898, 2394, 1356, 504, 111, 11
OFFSET
1,2
COMMENTS
Triangle is M*P, where M is the infinite bidiagonal matrix with (1,2,3,...) in the main diagonal and (1,1,1,...) in the subdiagonal and P is Pascal's triangle as an infinite lower triangular matrix. The triangle A124727 is P*M.
FORMULA
Sum_{k=1..n} T(n, k) = 2^(n-2)*(2*n + 1) - (1/2)*[n=1] = A052951(n-1). - G. C. Greubel, Jul 21 2021
EXAMPLE
First few rows of the triangle are
1;
3, 2;
4, 7, 3;
5, 14, 13, 4
6, 23, 33, 21, 5;
7, 34, 66, 64, 31, 6;
...
MAPLE
T:=proc(n, k) if n=1 and k=1 then 1 elif n=1 then 0 else binomial(n-2, k-1)+n*binomial(n-1, k-1) fi end: for n from 1 to 12 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_]= If[n==1, 1, Binomial[n-2, k-1] + n*Binomial[n-1, k-1]];
Table[T[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Jul 21 2021 *)
PROG
(PARI) T(n, k) = if ((n==1), (k==1), binomial(n-2, k-1)+n*binomial(n-1, k-1));
matrix(11, 11, n, k, T(n, k)) \\ Michel Marcus, Nov 09 2019
(Magma)
A123097:= func< n, k | n eq 1 select 1 else Binomial(n-2, k-1) + n*Binomial(n-1, k-1) >;
[A123097(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jul 21 2021
(Sage)
def A123097(n, k): return 1 if (n==1) else binomial(n-2, k-1) + n*binomial(n-1, k-1)
flatten([[A123097(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Jul 21 2021
CROSSREFS
Cf. A052951 (row sums).
Sequence in context: A368254 A368261 A368263 * A368218 A352419 A209706
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 24 2006
STATUS
approved