login
A368261
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to vertical reflection by an asymmetric tile.
2
1, 3, 2, 4, 7, 2, 10, 20, 14, 4, 16, 76, 88, 40, 4, 36, 272, 700, 532, 108, 8, 64, 1072, 5472, 8296, 3280, 362, 10, 136, 4160, 43800, 131344, 104968, 21944, 1182, 20, 256, 16576, 349568, 2098720, 3355456, 1399176, 149800, 4150, 30
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+----------------------------------------
1 | 1 3 4 10 16 36
2 | 2 7 20 76 272 1072
3 | 2 14 88 700 5472 43800
4 | 4 40 532 8296 131344 2098720
5 | 4 108 3280 104968 3355456 107377488
6 | 8 362 21944 1399176 89484128 5726689312
MATHEMATICA
A368261[n_, m_]:=1/(2n)*(DivisorSum[n, EulerPhi[#]*2^(n*m/#)&] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2])&], DivisorSum[n, EulerPhi[#]*2^(n*m/#)&, EvenQ]])
CROSSREFS
Sequence in context: A317736 A060006 A368254 * A368263 A123097 A368218
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved