login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368259
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal reflection by an asymmetric tile.
3
1, 2, 2, 4, 6, 2, 8, 20, 12, 4, 16, 72, 88, 39, 4, 32, 272, 688, 538, 104, 9, 64, 1056, 5472, 8292, 3280, 366, 10, 128, 4160, 43712, 131464, 104864, 22028, 1172, 22, 256, 16512, 349568, 2098704, 3355456, 1399512, 149800, 4179, 30
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+----------------------------------------
1 | 1 2 4 8 16 32
2 | 2 6 20 72 272 1056
3 | 2 12 88 688 5472 43712
4 | 4 39 538 8292 131464 2098704
5 | 4 104 3280 104864 3355456 107374208
6 | 9 366 22028 1399512 89489584 5726711136
MATHEMATICA
A368259[n_, m_]:=1/(2n) (DivisorSum[n, EulerPhi[#]*2^(n*m/#)&]+n*2^(n*m/2-1)*Boole[EvenQ[n]])
CROSSREFS
Sequence in context: A319579 A286631 A286243 * A305125 A260095 A209999
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved