login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368256
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by a tile that is fixed under 180-degree rotation but not horizontal or vertical reflections.
3
1, 2, 2, 3, 5, 2, 6, 14, 9, 4, 10, 44, 52, 26, 4, 20, 152, 366, 298, 62, 8, 36, 560, 2800, 4244, 1704, 205, 9, 72, 2144, 22028, 66184, 52740, 11228, 623, 18, 136, 8384, 175296, 1050896, 1679776, 701124, 75412, 2171, 23
OFFSET
1,2
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+--------------------------------------------
1 | 1 2 3 6 10 20
2 | 2 5 14 44 152 560
3 | 2 9 52 366 2800 22028
4 | 4 26 298 4244 66184 1050896
5 | 4 62 1704 52740 1679776 53696936
6 | 8 205 11228 701124 44758448 2863442960
7 | 9 623 75412 9591666 1227199056 157073688884
MATHEMATICA
A368256[n_, m_] := 1/(4n)*( DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n (2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^(n*m/#) &, EvenQ]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 3/2, True, Sqrt[2]])
CROSSREFS
Sequence in context: A117918 A302495 A368255 * A185688 A203955 A039638
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved