OFFSET
1,2
LINKS
Peter Kagey, Illustration of T(2,3)=14
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+--------------------------------------------
1 | 1 2 3 6 10 20
2 | 2 5 14 44 152 560
3 | 2 9 52 366 2800 22028
4 | 4 26 298 4244 66184 1050896
5 | 4 62 1704 52740 1679776 53696936
6 | 8 205 11228 701124 44758448 2863442960
7 | 9 623 75412 9591666 1227199056 157073688884
MATHEMATICA
A368256[n_, m_] := 1/(4n)*( DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + n (2^(n*m/2 - 1))*Boole[EvenQ[n]] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^(n*m/#) &, EvenQ]] + n*2^(n*m/2)*Which[EvenQ[m], 1, EvenQ[n], 3/2, True, Sqrt[2]])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved