OFFSET
1,1
LINKS
Peter Kagey, Illustration of T(2,3)=24
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k | 1 2 3 4 5 6
----+----------------------------------------
1 | 2 3 6 10 20 36
2 | 3 7 24 76 288 1072
3 | 4 13 74 430 3100 23052
4 | 6 34 378 4756 70536 1083664
5 | 8 78 1884 53764 1689608 53762472
6 | 13 237 11912 709316 44900448 2865540112
MATHEMATICA
A368253[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*If[EvenQ[n], 1/2 (2^((n*m + 2 m)/2) + 2^(n*m/2)), 2^((n*m + m)/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*Which[EvenQ[m], 2^(n*m/2), OddQ[m] && EvenQ[n], (3/2*2^(n*m/2)), OddQ[m] && OddQ[n], 2^((n*m + 1)/2)])
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 19 2023
STATUS
approved