login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368253
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to horizontal and vertical reflections by two tiles that are fixed under these reflections.
3
2, 3, 3, 6, 7, 4, 10, 24, 13, 6, 20, 76, 74, 34, 8, 36, 288, 430, 378, 78, 13, 72, 1072, 3100, 4756, 1884, 237, 18, 136, 4224, 23052, 70536, 53764, 11912, 687, 30, 272, 16576, 179736, 1083664, 1689608, 709316, 77022, 2299, 46
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv:2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k | 1 2 3 4 5 6
----+----------------------------------------
1 | 2 3 6 10 20 36
2 | 3 7 24 76 288 1072
3 | 4 13 74 430 3100 23052
4 | 6 34 378 4756 70536 1083664
5 | 8 78 1884 53764 1689608 53762472
6 | 13 237 11912 709316 44900448 2865540112
MATHEMATICA
A368253[n_, m_] := 1/(4n)*(DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/d)]] + n*If[EvenQ[n], 1/2 (2^((n*m + 2 m)/2) + 2^(n*m/2)), 2^((n*m + m)/2)] + If[EvenQ[m], DivisorSum[n, Function[d, EulerPhi[d]*2^(n*m/LCM[d, 2])]], DivisorSum[n, Function[d, EulerPhi[d]*2^((n*m - n)/LCM[d, 2])*2^(n/d)]]] + n*Which[EvenQ[m], 2^(n*m/2), OddQ[m] && EvenQ[n], (3/2*2^(n*m/2)), OddQ[m] && OddQ[n], 2^((n*m + 1)/2)])
CROSSREFS
Cf. A005418 (n=1), A225826 (n=2), A000029 (k=1), A222187 (k=2).
Sequence in context: A187763 A187262 A117670 * A368260 A368262 A181695
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 19 2023
STATUS
approved