login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368260
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to vertical reflections by two tiles that are each fixed under vertical reflection.
2
2, 3, 3, 6, 7, 4, 10, 24, 14, 6, 20, 76, 100, 40, 8, 36, 288, 700, 564, 108, 14, 72, 1072, 5560, 8296, 3384, 362, 20, 136, 4224, 43800, 131856, 104968, 22288, 1182, 36, 272, 16576, 350256, 2098720, 3358736, 1399176, 150972, 4150, 60
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+-----------------------------------------
1 | 2 3 6 10 20 36
2 | 3 7 24 76 288 1072
3 | 4 14 100 700 5560 43800
4 | 6 40 564 8296 131856 2098720
5 | 8 108 3384 104968 3358736 107377488
6 | 14 362 22288 1399176 89505984 5726689312
MATHEMATICA
A368260[n_, m_] := 1/(2 n) (DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^((n*m - n)/LCM[#, 2])*2^(n/#) &]])
CROSSREFS
Sequence in context: A187262 A117670 A368253 * A368262 A181695 A322291
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved