login
A368260
Table read by downward antidiagonals: T(n,k) is the number of tilings of the n X k cylinder up to vertical reflections by two tiles that are each fixed under vertical reflection.
2
2, 3, 3, 6, 7, 4, 10, 24, 14, 6, 20, 76, 100, 40, 8, 36, 288, 700, 564, 108, 14, 72, 1072, 5560, 8296, 3384, 362, 20, 136, 4224, 43800, 131856, 104968, 22288, 1182, 36, 272, 16576, 350256, 2098720, 3358736, 1399176, 150972, 4150, 60
OFFSET
1,1
LINKS
Peter Kagey and William Keehn, Counting tilings of the n X m grid, cylinder, and torus, arXiv: 2311.13072 [math.CO], 2023.
EXAMPLE
Table begins:
n\k| 1 2 3 4 5 6
---+-----------------------------------------
1 | 2 3 6 10 20 36
2 | 3 7 24 76 288 1072
3 | 4 14 100 700 5560 43800
4 | 6 40 564 8296 131856 2098720
5 | 8 108 3384 104968 3358736 107377488
6 | 14 362 22288 1399176 89505984 5726689312
MATHEMATICA
A368260[n_, m_] := 1/(2 n) (DivisorSum[n, EulerPhi[#]*2^(n*m/#) &] + If[EvenQ[m], DivisorSum[n, EulerPhi[#]*2^(n*m/LCM[#, 2]) &], DivisorSum[n, EulerPhi[#]*2^((n*m - n)/LCM[#, 2])*2^(n/#) &]])
CROSSREFS
Sequence in context: A187262 A117670 A368253 * A368262 A181695 A322291
KEYWORD
nonn,tabl
AUTHOR
Peter Kagey, Dec 21 2023
STATUS
approved