login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209706
Triangle of coefficients of polynomials v(n,x) jointly generated with A209705; see the Formula section.
3
1, 3, 2, 4, 7, 4, 5, 14, 18, 8, 6, 23, 46, 44, 16, 7, 34, 92, 136, 104, 32, 8, 47, 160, 320, 376, 240, 64, 9, 62, 254, 640, 1016, 992, 544, 128, 10, 79, 378, 1148, 2296, 3024, 2528, 1216, 256, 11, 98, 536, 1904, 4592, 7616, 8576, 6272, 2688, 512, 12, 119
OFFSET
1,2
COMMENTS
Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x) = x*u(n-1,x)+x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x)+(x+1)v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k)-2*T(n-2,k-1), T(1,0)=1, T(2,0)=3, T(2,1)=2, T(3,0)=4, T(3,1)=7, T(3,2)=4, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 27 2013
EXAMPLE
First five rows:
1
3...2
4...7....4
5...14...18...8
6...23...46...44...16
First three polynomials v(n,x): 1, 3 + 2x , 4 + 7x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209705 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209706 *)
CROSSREFS
Sequence in context: A123097 A368218 A352419 * A350077 A134571 A054086
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 12 2012
STATUS
approved