login
A209705
Triangle of coefficients of polynomials u(n,x) jointly generated with A209706; see the Formula section.
4
1, 0, 2, 0, 3, 4, 0, 4, 10, 8, 0, 5, 18, 28, 16, 0, 6, 28, 64, 72, 32, 0, 7, 40, 120, 200, 176, 64, 0, 8, 54, 200, 440, 576, 416, 128, 0, 9, 70, 308, 840, 1456, 1568, 960, 256, 0, 10, 88, 448, 1456, 3136, 4480, 4096, 2176, 512, 0, 11, 108, 624, 2352, 6048
OFFSET
1,3
COMMENTS
Alternating row sums: 1,-2,1,-2,1,-2,1,-2,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x) = x*u(n-1,x)+x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k)-2*T(n-2,k-1), T(1,0)=1, T(2,0)=0, T(2,1)=2, T(3,0)=0, T(3,1)=3, T(3,2)=4, T(n,k)=0 if k<0 or if k>=n. - Philippe Deléham, Dec 27 2013
EXAMPLE
First five rows:
1
0...2
0...3...4
0...4...10...8
0...5...18...28...16
First three polynomials v(n,x): 1, 2x, 3x + 4x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209705 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209706 *)
CROSSREFS
Sequence in context: A227595 A078436 A368090 * A181289 A229032 A352835
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 12 2012
STATUS
approved