login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials v(n,x) jointly generated with A209705; see the Formula section.
3

%I #9 Dec 28 2013 04:12:44

%S 1,3,2,4,7,4,5,14,18,8,6,23,46,44,16,7,34,92,136,104,32,8,47,160,320,

%T 376,240,64,9,62,254,640,1016,992,544,128,10,79,378,1148,2296,3024,

%U 2528,1216,256,11,98,536,1904,4592,7616,8576,6272,2688,512,12,119

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A209705; see the Formula section.

%C Alternating row sums: 1,1,1,1,1,1,1,1,1,1,1,1,...

%C For a discussion and guide to related arrays, see A208510.

%F u(n,x) = x*u(n-1,x)+x*v(n-1,x),

%F v(n,x) = (x+1)*u(n-1,x)+(x+1)v(n-1,x)+1,

%F where u(1,x)=1, v(1,x)=1.

%F T(n,k) = 2*T(n-1,k)+2*T(n-1,k-1)-T(n-2,k)-2*T(n-2,k-1), T(1,0)=1, T(2,0)=3, T(2,1)=2, T(3,0)=4, T(3,1)=7, T(3,2)=4, T(n,k)=0 if k<0 or if k>=n. - _Philippe Deléham_, Dec 27 2013

%e First five rows:

%e 1

%e 3...2

%e 4...7....4

%e 5...14...18...8

%e 6...23...46...44...16

%e First three polynomials v(n,x): 1, 3 + 2x , 4 + 7x + 4x^2.

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A209705 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A209706 *)

%Y Cf. A209705, A208510.

%K nonn,tabl

%O 1,2

%A _Clark Kimberling_, Mar 12 2012