login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123098
Multiplicative encoding of triangle formed by reading Pascal's triangle mod 2 (A047999).
9
2, 6, 10, 210, 22, 858, 1870, 9699690, 46, 4002, 7130, 160660290, 20746, 1008940218, 2569288370, 32589158477190044730, 118, 21594, 39530, 3595293030, 94754, 17808161514, 44788794490, 7074421030108255253430, 263258, 141108130806, 281595235990, 296987147493893719182390, 944729501606
OFFSET
0,1
COMMENTS
This is to A047999 "Triangle formed by reading Pascal's triangle mod 2" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows." a(2^n - 1) = primorial(2^n) = A002110(A000079(n)). In row(n) the primes with exponent 1 form row(n) of a Sierpinski sieve, so this sequence is a kind of Gödelization of a Sierpinski sieve.
All terms are divisible by 2 and the n-th term, a(n-1), is also divisible by prime(n). This sequence appears as first column of the square array A255483; its second column A276804 is very similar, with all prime factors shifted to the net larger prime (cf. A003961). - M. F. Hasler, Sep 17 2016
a(n) is the n-th power of 6 in the ring defined in A329329. - Peter Munn, Jan 04 2020
LINKS
C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014.
FORMULA
a(n) = Product_{i=0..n} p(i+1)^(C(n,i) mod 2).
a(n) = Product_{i=0..n} p(i+1)^T(n,i), where T(n,i) are as in A047999 and where Sum_{k>=0} T(n, k) = A001316(n) = 2^A000120(n).
From Antti Karttunen, Sep 18 2016: (Start)
a(n) = A007913(A007188(n)). [From the first comment.]
a(n) = A019565(A001317(n)).
(End)
a(0) = 2, and for n > 0, a(n) = A329329(a(n-1), 6). - Peter Munn, Jan 04 2020
EXAMPLE
a(0) = 2^T(0,0) = 2^1 = 2.
a(1) = 2^T(1,0) * 3^T(1,1) = 2^1 * 3^1 = 6.
a(2) = 2^T(2,0) * 3^T(2,1) * 5^T(2,2) = 2^1 * 3^0 * 5^1 = 10.
a(3) = 2^T(3,0) * 3^T(3,1) * 5^T(3,2) * 7^T(3,3) = 2^1 * 3^1 * 5^1 * 7^1 = 210.
a(4) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 = 22.
a(5) = 2^1 * 3^1 * 5^0 * 7^0 * 11^1 * 13^1 = 858.
a(6) = 2^1 * 3^0 * 5^1 * 7^0 * 11^1 * 13^0 * 17^1 = 1870.
a(7) = 2^1 * 3^1 * 5^1 * 7^1 * 11^1 * 13^1 * 17^1 * 19^1 = 9699690.
a(8) = 2^1 * 3^0 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 = 46.
a(9) = 2^1 * 3^1 * 5^0 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 = 4002.
a(10) = 2^1 * 3^0 * 5^1 * 7^0 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^1 = 7130.
a(11) = 2^1 * 3^1 * 5^1 * 7^1 * 11^0 * 13^0 * 17^0 * 19^0 * 23^1 * 29^1 * 31^1 * 37^1 = 160660290.
a(12) = 2^1 * 3^0 * 5^0 * 7^0 * 11^1 * 13^0 * 17^0 * 19^0 * 23^1 * 29^0 * 31^0 * 37^0 * 41^1 = 20746.
From N. J. A. Sloane, Feb 28 2015: (Start)
Factorizations of initial terms, from Cobeli-Zaharescu paper:
2 = 2
6 = 2*3
10 = 2*5
210 = 2*3*5*7
22 = 2*11
858 = 2*3*11*13
1870 = 2*5*11*17
9699690 = 2*3*5*7*11*13*17*19
46 = 2*23
4002 = 2*3*23*29
7130 = 2*5*23*31
160660290 = 2*3*5*7*23*29*31*37
20746 = 2*11*23*41
1008940218 = 2*3*11*13*23*29*41*43
2569288370 = 2*5*11*17*23*31*41*47
32589158477190044730 = 2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*53
... (End)
From Jon E. Schoenfield, Jun 09 2019: (Start)
n | Factorization of a(n)
---+-----------------------------------------------
0 | 2
1 | 2* 3
2 | 2 * 5
3 | 2* 3* 5* 7
4 | 2 *11
5 | 2* 3 *11*13
6 | 2 * 5 *11 *17
7 | 2* 3* 5* 7*11*13*17*19
8 | 2 *23
9 | 2* 3 *23*29
10 | 2 * 5 *23 *31
11 | 2* 3* 5* 7 *23*29*31*37
12 | 2 *11 *23 *41
13 | 2* 3 *11*13 *23*29 *41*43
14 | 2 * 5 *11 *17 *23 *31 *41 *47
15 | 2* 3* 5* 7*11*13*17*19*23*29*31*37*41*43*47*53
... (End)
MAPLE
f:=n->mul(ithprime(k+1)^(binomial(n, k) mod 2), k=0..n);
[seq(f(n), n=0..40)];
MATHEMATICA
a[n_] := Product[Prime[k+1]^Mod[Binomial[n, k], 2], {k, 0, n}];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Oct 01 2018, from Maple *)
PROG
(Python)
from operator import mul
from functools import reduce
from sympy import prime
def A123098(n):
return reduce(mul, (1 if ~(n-1) & k else prime(k+1) for k in range(n))) # Chai Wah Wu, Feb 08 2016
(Scheme) (define (A123098 n) (A019565 (A001317 n))) ;; Antti Karttunen, Sep 18 2016
(PARI) a(n) = prod (k=0, n, if (binomial(n, k)%2, prime(k+1), 1)) \\ Rémy Sigrist, Jun 09 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Nov 05 2006
EXTENSIONS
Further terms from N. J. A. Sloane, Feb 28 2015
Changed offset from 1 to 0, corresponding changes to formulas and examples from Antti Karttunen, Sep 18 2016
STATUS
approved