login
A162582
G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^n * x^n/n ), where A006519(n) = highest power of 2 dividing n.
3
1, 2, 6, 10, 146, 282, 826, 1370, 4204986, 8408602, 25223066, 42037530, 615687706, 1189337882, 3483938586, 5778539290, 2305851850537847066, 4611703695297154842, 13835111074334385946, 23058518453371617050
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^8*x^4/4 + 2^0*x^5/5 + 2^6*x^6/6 + 2^0*x^7/7 + 2^24*x^8/8 + ... + A006519(n)^n*x^n/n + ...
MATHEMATICA
nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(k*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, n, 2*(2^valuation(m, 2))^m*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 06 2009
STATUS
approved