|
|
A181130
|
|
Numerator of Integral_{x=0..+oo} Polylog(-n, -x)^2.
|
|
5
|
|
|
1, 2, 8, 8, 32, 6112, 3712, 362624, 71706112, 3341113856, 79665268736, 1090547664896, 38770843648, 106053090598912, 5507347586961932288, 136847762542978039808, 45309996254420664320, 3447910579774800362340352
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
(-1)^n*a(n) is the numerator on the main diagonal of the (truncated) array described in A168516. - Paul Curtz, Jun 20 2011
These are - up to signs - the numerators of the Bernoulli median numbers (see A212196). - Peter Luschny, May 04 2012
|
|
LINKS
|
Table of n, a(n) for n=1..18.
Peter Luschny, The computation and asymptotics of the Bernoulli numbers.
|
|
FORMULA
|
a(n) = numerator((-1)^n/Pi^(2*n)*integral((log(t/(1-t))*log(1-1/t))^n dt,t=0,1)). - [Gerry Martens, May 25 2011]
|
|
MAPLE
|
seq(numer((-1)^n*add(binomial(n, k)*bernoulli(n+k), k=0..n)), n=1..30); # Robert Israel, Jun 02 2015
|
|
MATHEMATICA
|
Table[Numerator[Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]], {n, 1, 18}]
|
|
PROG
|
(Sage) # uses[BernoulliMedian_list from A212196]
def A181130_list(n): return [q.numerator() for q in BernoulliMedian_list(n)]
# Peter Luschny, May 04 2012
(PARI) a(n)=(-1)^n*sum(k=0, n, binomial(n, k)*bernfrac(n+k)) \\ Charles R Greathouse IV, Jun 03 2015
|
|
CROSSREFS
|
Cf. A181131 (denominator), A212196.
Sequence in context: A227326 A323852 A064231 * A212196 A156052 A170923
Adjacent sequences: A181127 A181128 A181129 * A181131 A181132 A181133
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
Vladimir Reshetnikov, Jan 23 2011
|
|
STATUS
|
approved
|
|
|
|