|
|
A181129
|
|
Smallest primes of the form (i+1)(i+2)...(h-1)(h)1234...(i-1)(i). These elements, by definition, belong to A001292.
|
|
3
|
|
|
2341, 89101234567, 45678910111213123, 23456789101112131415161718192021222324251, 30313233341234567891011121314151617181920212223242526272829, 20212223242526272829303132333435363738394041424344454612345678910111213141516171819, 42434445461234567891011121314151617181920212223242526272829303132333435363738394041, 14151617181920212223242526272829303132333435363738394041424344454647484950515212345678910111213
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
If we indicate by p(j) the j-th term of A001292, the sequence above can be synthesized as:
p(8), p(53), p(82), p(302), p(591), p(1055), p(1077), p(1340), p(1499), p(1890), p(2231), p(3109), p(3145), p(3620), p(3878), p(4405), p(6248), p(8878), p(8888), p(11329), p(11439), p(12310), p(12344), p(13323), p(13747), p(15883), p(17471), p(17985), p(19815), p(20335), p(21676).
The first 30 terms of the sequence contain fewer than 500 digits. Among the first 22155 terms of A001292 only 31 are primes.
|
|
REFERENCES
|
Marco Ripà, "Rudimatematici", Bookshelf, October 2010. M. Vassilev-Missana and K. Atanassov, "Some Smarandache problems", Hexis, 2004.
|
|
LINKS
|
|
|
PROG
|
(Python) # uses A001292gen() and imports from A001292
from sympy import isprime
def agen(): yield from filter(isprime, A001292gen())
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|