The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A170923 a(n) = denominator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{0 < k < n} 1 + c(k)*x^k, n = 1, 2, 3, ... 2
 2, 8, 8, 128, 32, 512, 128, 32768, 128, 32768, 2048, 2097152, 8192, 2097152, 32768, 2147483648, 131072, 16777216, 524288, 34359738368, 2097152, 8589934592, 8388608, 35184372088832, 524288, 549755813888, 33554432, 562949953421312, 536870912, 35184372088832 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008. Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364. Giedrius Alkauskas, Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems, arXiv:1609.09842 [math.NT], 2016. H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161. H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239. Wolfdieter Lang, Recurrences for the general problem. MAPLE L := 32: g := NULL: t := series(sqrt(1+x), x, L): for n from 1 to L-2 do c := coeff(t, x, n); t := series(t/(1 + c*x^n), x, L); g := g, c; od: map(denom, [g]); # Peter Luschny, May 12 2022 CROSSREFS Cf. A170922 (numerators). Cf. A353583 / A353584 for power product expansion of 1 + tan x. Cf. A353586 / A353587 for power product expansion of (tan x)/x. Sequence in context: A181130 A212196 A156052 * A083523 A202619 A202379 Adjacent sequences: A170920 A170921 A170922 * A170924 A170925 A170926 KEYWORD nonn,frac AUTHOR N. J. A. Sloane, Jan 31 2010 EXTENSIONS Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data. - Peter Luschny, May 12 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 9 05:05 EST 2023. Contains 360153 sequences. (Running on oeis4.)