login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170923
a(n) = denominator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
2
2, 8, 8, 128, 32, 512, 128, 32768, 128, 32768, 2048, 2097152, 8192, 2097152, 32768, 2147483648, 131072, 16777216, 524288, 34359738368, 2097152, 8589934592, 8388608, 35184372088832, 524288, 549755813888, 33554432, 562949953421312, 536870912, 35184372088832
OFFSET
1,1
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
MAPLE
L := 32: g := NULL:
t := series(sqrt(1+x), x, L):
for n from 1 to L-2 do
c := coeff(t, x, n);
t := series(t/(1 + c*x^n), x, L);
g := g, c;
od: map(denom, [g]); # Peter Luschny, May 12 2022
CROSSREFS
Cf. A170922 (numerators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.
Sequence in context: A181130 A212196 A156052 * A083523 A202619 A202379
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 31 2010
EXTENSIONS
Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022
STATUS
approved