login
A353583
Numerators of coefficients c(n) in product expansion of 1 + tan x = Product_{k>=1} 1 + c(k)*x^k.
12
1, 0, 1, -1, 7, -7, 199, -71, 484, -368, 187909, -610103, 2068657, -63614, 1530164189, -1715846683, 7628902283, -125125345078, 9521826231889, -17921564328719, 291162274608871, -47147385565688, 552647133893696333, -36898601487519532, 4761064630028162378
OFFSET
1,5
COMMENTS
See A353584 for the denominators, and A353586 for the analog for (tan x)/x.
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
EXAMPLE
1 + tan x = (1 + x)(1 + 1/3*x^3)(1 - 1/3*x^4/3)(1 + 7/15*x^5)(1 - 7/15*x^5)(...),
and this sequence lists the numerators of (1, 0, 1/3, -1/3, 7/15, -7/15, ...).
PROG
(PARI) t=1+tan(x+O(x)^29); vector(#t-1, n, c=polcoef(t, n); t/=1+c*x^n; numerator(c))
CROSSREFS
Cf. A353584 (denominators), A353586 / A353587 (similar for (tan x)/x).
Cf. A170918 / A170919 for a variant.
Sequence in context: A001988 A099739 A261128 * A048430 A197860 A180321
KEYWORD
sign,frac
AUTHOR
M. F. Hasler, May 07 2022
STATUS
approved