login
A083523
Smallest Fibonacci number divisible by 2^n.
2
1, 2, 8, 8, 144, 46368, 4807526976, 51680708854858323072, 5972304273877744135569338397692020533504, 79757008057644623350300078764807923712509139103039448418553259155159833079730688
OFFSET
0,2
COMMENTS
The index of the Fibonacci numbers above begin: 1, 3, 6, 6 and then doubles thereafter.
LINKS
Tamás Lengyel, The order of the Fibonacci and Lucas numbers, The Fibonacci Quarterly, Vol. 33, No. 3 (1995), pp. 234-239.
FORMULA
From Amiram Eldar, Jan 29 2022: (Start)
a(n) = Fibonacci(3*2^(n-2)) = A000045(A007283(n-2)) = A079613(n-2), for n > 2.
Sum_{n>=0} 1/a(n) = 19/8 - 1/phi, where phi is the golden ratio (A001622). (End)
MATHEMATICA
Do[k = 1; While[ !IntegerQ[ Fibonacci[k]/2^n], k++ ]; Print[ Fibonacci[k]], {n, 0, 10}]
With[{fibs=Fibonacci[Range[1000]]}, Table[SelectFirst[fibs, Divisible[#, 2^n]&], {n, 0, 10}]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Feb 02 2021 *)
Join[{1, 2, 8}, Table[Fibonacci[3*2^(n - 2)], {n, 3, 9}]] (* Amiram Eldar, Jan 29 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 05 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 06 2003
STATUS
approved