login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170925 G.f.: eta(q)*eta(q^2)*eta(q^4)*eta(q^8)*eta(q^16)*eta(q^32)*..., where eta(q) = Product((1-q^m), m=1..oo). 6
1, -1, -2, 1, -1, 3, 3, -1, -2, -2, 4, -4, -1, -3, -3, 2, 1, 9, -1, 6, 7, -8, -10, 1, -1, 0, -2, 0, 2, -1, 4, -4, -1, -5, 14, -15, -7, 9, 11, 7, 0, 3, -14, 17, -7, 18, 4, -6, -7, -25, -12, -5, -13, -3, 9, -14, 25, 10, -2, 8, 17, 1, 2, 13, 4, 0, -4, 7, 13, -27, -42, 11, 5, 5, 10, -24, 3, -21, -4, 0, -32, 27, 29, -1, -4, 43, 26, -7, -41, -9, 27, -11 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

eta(q) = A(q)/A(q^2), where A(q) is the g.f. for this sequence (cf. A010815).

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..10000

MATHEMATICA

nmax = 100; CoefficientList[Series[Product[QPochhammer[x^(2^k)], {k, 0, Log[nmax]/Log[2]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 23 2019 *)

PROG

(Ruby)

def s(k, n)

  s = 0

  (1..n).each{|i| s += i if n % i == 0 && i % k == 0}

  s

end

def A(ary, n)

  a_ary = [1]

  a = [0] + (1..n).map{|i| ary.inject(0){|s, j| s + j[1] * s(j[0], i)}}

  (1..n).each{|i| a_ary << (1..i).inject(0){|s, j| s - a[j] * a_ary[-j]} / i}

  a_ary

end

def A170925(n)

  A((0..Math.log(n, 2)).map{|i| [2 ** i, 1]}, n)

end

p A170925(100) # Seiichi Manyama, Sep 23 2019

CROSSREFS

Cf. A010815, A083650, A030189, A160832, A143374, A194087.

Sequence in context: A067924 A344912 A056670 * A030189 A275678 A273108

Adjacent sequences:  A170922 A170923 A170924 * A170926 A170927 A170928

KEYWORD

sign

AUTHOR

N. J. A. Sloane and Gary W. Adamson, Feb 18 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 22:06 EDT 2021. Contains 345053 sequences. (Running on oeis4.)