login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170922
a(n) = numerator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
1
1, -1, 1, -13, 3, -37, 9, -1861, 7, -1491, 93, -81001, 315, -69705, 1083, -63586357, 3855, -438821, 13797, -822684711, 49689, -186369117, 182361, -704368012465, 10485, -10165801275, 619549, -9738266477517, 9256395, -566066862375, 34636833, -140047960975823893
OFFSET
1,4
LINKS
Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
EXAMPLE
1/2, -1/8, 1/8, -13/128, 3/32, -37/512, 9/128, -1861/32768, ...
MAPLE
L := 34: g := NULL:
t := series(sqrt(1+x), x, L):
for n from 1 to L-2 do
c := coeff(t, x, n);
t := series(t/(1 + c*x^n), x, L);
g := g, c;
od: map(numer, [g]); # Peter Luschny, May 12 2022
CROSSREFS
Cf. A170923 (denominators).
Cf. A353583 / A353584 for power product expansion of 1 + tan x.
Cf. A353586 / A353587 for power product expansion of (tan x)/x.
Sequence in context: A107806 A138965 A317313 * A005602 A272175 A297874
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Jan 31 2010
EXTENSIONS
Following a suggestion from Ilya Gutkovskiy, name corrected so that it matches the data by Peter Luschny, May 12 2022
STATUS
approved