login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272175 Least number k such that (k^2+1) mod s = prime(n) where s is the sum of the distinct primes dividing k^2+1, or 0 if no such k exists. 0
13, 3, 68, 182, 5, 32, 191, 333, 73, 70, 1068, 132, 507, 173, 774, 50, 11, 30, 1553, 3990, 338, 2307, 246, 2917, 1228, 80, 14369, 76, 114, 1590, 2529, 100, 28, 4952, 82, 659, 948, 7083, 2190, 8938, 19, 489, 11393, 1968, 2941, 21124, 3549, 1725, 64, 1382, 2540 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: a(n)> 0 for all n > 0.

The primes in the sequence are 3, 5, 11, 13, 19, 29, 73, 173, 191,...

The squares in the sequence are 25, 64, 100,...

LINKS

Table of n, a(n) for n=1..51.

EXAMPLE

a(1)=13 because 13^2+1 = 170 = 2*5*17 => 170 mod(2+5+17) = 170 mod 24 = 2 = prime(1).

MATHEMATICA

Table[k=0; While[Mod[k^2+1, Plus@@First[Transpose[FactorInteger[k^2+1]]]]!=Prime[n], k++]; k, {n, 50}]

PROG

(PARI) a(n) = {k = 1; while ((m=k^2+1) && (lift(Mod(m, vecsum(factor(m)[, 1]))) != prime(n)) , k++); k; } \\ Michel Marcus, Apr 29 2016

CROSSREFS

Cf. A005574, A193462, A262965.

Sequence in context: A317313 A170922 A005602 * A297874 A298137 A155847

Adjacent sequences:  A272172 A272173 A272174 * A272176 A272177 A272178

KEYWORD

nonn

AUTHOR

Michel Lagneau, Apr 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 16:31 EST 2019. Contains 329396 sequences. (Running on oeis4.)