login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = numerator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...
1

%I #19 Jul 23 2023 18:23:46

%S 1,-1,1,-13,3,-37,9,-1861,7,-1491,93,-81001,315,-69705,1083,-63586357,

%T 3855,-438821,13797,-822684711,49689,-186369117,182361,-704368012465,

%U 10485,-10165801275,619549,-9738266477517,9256395,-566066862375,34636833,-140047960975823893

%N a(n) = numerator of the coefficient c(n) of x^n in sqrt(1+x)/Product_{k=1..n-1} 1 + c(k)*x^k, n = 1, 2, 3, ...

%H Giedrius Alkauskas, <a href="http://arxiv.org/abs/0801.0805">One curious proof of Fermat's little theorem</a>, arXiv:0801.0805 [math.NT], 2008.

%H Giedrius Alkauskas, <a href="https://www.jstor.org/stable/40391097">A curious proof of Fermat's little theorem</a>, Amer. Math. Monthly 116(4) (2009), 362-364.

%H Giedrius Alkauskas, <a href="https://arxiv.org/abs/1609.09842">Algebraic functions with Fermat property, eigenvalues of transfer operator and Riemann zeros, and other open problems</a>, arXiv:1609.09842 [math.NT], 2016.

%H H. Gingold, H. W. Gould, and Michael E. Mays, <a href="https://www.researchgate.net/publication/268023169_Power_product_expansions">Power Product Expansions</a>, Utilitas Mathematica 34 (1988), 143-161.

%H H. Gingold and A. Knopfmacher, <a href="http://dx.doi.org/10.4153/CJM-1995-062-9">Analytic properties of power product expansions</a>, Canad. J. Math. 47 (1995), 1219-1239.

%H Wolfdieter Lang, <a href="/A157162/a157162.txt">Recurrences for the general problem</a>.

%e 1/2, -1/8, 1/8, -13/128, 3/32, -37/512, 9/128, -1861/32768, ...

%p L := 34: g := NULL:

%p t := series(sqrt(1+x), x, L):

%p for n from 1 to L-2 do

%p c := coeff(t, x, n);

%p t := series(t/(1 + c*x^n), x, L);

%p g := g, c;

%p od: map(numer, [g]); # _Peter Luschny_, May 12 2022

%Y Cf. A170923 (denominators).

%Y Cf. A353583 / A353584 for power product expansion of 1 + tan x.

%Y Cf. A353586 / A353587 for power product expansion of (tan x)/x.

%K sign,frac

%O 1,4

%A _N. J. A. Sloane_, Jan 31 2010

%E Following a suggestion from _Ilya Gutkovskiy_, name corrected so that it matches the data by _Peter Luschny_, May 12 2022