Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:46:17
%S 1,2,6,28,156,984,7112,57488,508688,4887840,50639200,561416640,
%T 6621963712,82719611264,1089925195904,15094182365440,219035852333312,
%U 3321573144437248,52511336993334784,863594855161338880,14746060593172585472,260971042697438779392
%N a(n) = exp(-1) * Sum_{k>=0} H_n(k)/k!, where H_n(x) is n-th Hermite polynomial.
%H G. C. Greubel, <a href="/A277381/b277381.txt">Table of n, a(n) for n = 0..500</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>
%F E.g.f.: exp(exp(2*x)-x^2-1).
%F a(n) ~ 2^n * n^n * exp(n/LambertW(n) - LambertW(n)^2 / 4 - n - 1) / (sqrt(1 + LambertW(n)) * LambertW(n)^n). - _Vaclav Kotesovec_, Jun 29 2022
%p g := exp(exp(2*x)-x^2-1): ser := series(g,x,32):
%p seq(n!*coeff(ser,x,n), n=0..21); # _Peter Luschny_, Oct 19 2016
%t Table[Sum[HermiteH[n, k]/k!, {k, 0, Infinity}]/E, {n, 0, 20}] (* or *)
%t Table[SeriesCoefficient[Exp[Exp[2 x] - x^2 - 1], {x, 0, n}] n!, {n, 0, 20}]
%t With[{nmax = 50}, CoefficientList[Series[Exp[Exp[2*x] - x^2 - 1], {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jul 12 2018 *)
%t Table[Sum[Binomial[n, k] * 2^k * BellB[k] * HermiteH[n-k, 0], {k, 0, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Jul 13 2018 *)
%o (PARI) x='x+O('x^50); Vec(serlaplace(exp(exp(2*x)-x^2-1))) \\ _G. C. Greubel_, Jul 12 2018
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(Exp(2*x) -x^2 -1))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, Jul 12 2018
%Y Cf. A277380, A316778.
%K nonn
%O 0,2
%A _Vladimir Reshetnikov_, Oct 11 2016