login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111839
Column 0 of the matrix logarithm (A111838) of triangle A111835, which shifts columns left and up under matrix 8th power; these terms are the result of multiplying the element in row n by n!.
8
0, 1, -6, 142, 31800, -159468264, -2481298801008, 1414130111428687344, 1827317023092830201950080, -89946874545119714361987192509568, -9262235489215916508714844705185660161280
OFFSET
0,3
COMMENTS
Let q=8; the g.f. of column k of A111825^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).
FORMULA
E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(8^j*x)/(j+1).
EXAMPLE
A(x) = x - 6/2!*x^2 + 142/3!*x^3 + 31800/4!*x^4 - 159468264/5!*x^5 +...
where e.g.f. A(x) satisfies:
x/(1-x) = A(x) + A(x)*A(8*x)/2! + A(x)*A(8*x)*A(8^2*x)/3! +
A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
Let G(x) be the g.f. of A111836 (column 1 of A111835), then
G(x) = 1 + 8*A(x) + 8^2*A(x)*A(8*x)/2! +
8^3*A(x)*A(8*x)*A(8^2*x)/3! +
8^4*A(x)*A(8*x)*A(8^2*x)*A(8^3*x)/4! + ...
PROG
(PARI) {a(n, q=8)=local(A=x/(1-x+x*O(x^n))); for(i=1, n, A=x/(1-x)/(1+sum(j=1, n, prod(k=1, j, subst(A, x, q^k*x))/(j+1)!))); return(n!*polcoeff(A, n))}
CROSSREFS
Cf. A111835 (triangle), A111836, A111838 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111829 (q=6), A111834 (q=7).
Sequence in context: A278356 A277419 A349069 * A349076 A037049 A196811
KEYWORD
sign
AUTHOR
STATUS
approved