login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111829 Column 0 of the matrix logarithm (A111828) of triangle A111825, which shifts columns left and up under matrix 6th power; these terms are the result of multiplying the element in row n by n!. 8
0, 1, -4, 42, 7296, -7931976, -45557382240, 3064554175021200, 801993619807364206080, -2618439032548254776387771520, -30580166025709706974876961026475520, 4440597519115996836838709580481861376121600 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Let q=6; the g.f. of column k of A111825^m (matrix power m) is: 1 + Sum_{n>=1} (m*q^k)^n/n! * Product_{j=0..n-1} A(q^j*x).

LINKS

Table of n, a(n) for n=0..11.

FORMULA

E.g.f. satisfies: x/(1-x) = Sum_{n>=1} Prod_{j=0..n-1} A(6^j*x)/(j+1).

EXAMPLE

A(x) = x - 4/2!*x^2 + 42/3!*x^3 + 7296/4!*x^4 - 7931976/5!*x^5 +...

where e.g.f. A(x) satisfies:

x/(1-x) = A(x) + A(x)*A(6*x)/2! + A(x)*A(6*x)*A(6^2*x)/3! +

A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...

Let G(x) be the g.f. of A111826 (column 1 of A111825), then

G(x) = 1 + 6*A(x) + 6^2*A(x)*A(6*x)/2! +

6^3*A(x)*A(6*x)*A(6^2*x)/3! +

6^4*A(x)*A(6*x)*A(6^2*x)*A(6^3*x)/4! + ...

PROG

(PARI) {a(n, q=6)=local(A=x/(1-x+x*O(x^n))); for(i=1, n, A=x/(1-x)/(1+sum(j=1, n, prod(k=1, j, subst(A, x, q^k*x))/(j+1)!))); return(n!*polcoeff(A, n))}

CROSSREFS

Cf. A111825 (triangle), A111826, A111828 (matrix log); A110505 (q=-1), A111814 (q=2), A111816 (q=3), A111819 (q=4), A111824 (q=5), A111834 (q=7), A111839 (q=8).

Sequence in context: A220180 A134356 A156479 * A200000 A198209 A220774

Adjacent sequences:  A111826 A111827 A111828 * A111830 A111831 A111832

KEYWORD

sign

AUTHOR

Gottfried Helms and Paul D. Hanna, Aug 22 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 23 07:28 EST 2018. Contains 299473 sequences. (Running on oeis4.)