login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352113
Expansion of e.g.f. (1 - log(1 - 3*x))^(1/3).
4
1, 1, 1, 10, 64, 874, 11602, 214696, 4287376, 102791944, 2706467608, 80520419440, 2616373545040, 93309672227680, 3598524149027680, 149819807423180800, 6681701058862660480, 318224146460638476160, 16106859257541255648640, 863764371283534316220160
OFFSET
0,4
FORMULA
a(n) = Sum_{k=0..n} (-3)^(n-k) * (Product_{j=0..k-1} (-3*j+1)) * Stirling1(n,k).
a(n) ~ n! * 3^(n-1) / (log(n)^(2/3) * n) * (1 - 2*(gamma + 1)/(3*log(n))), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Mar 05 2022
MATHEMATICA
m = 19; Range[0, m]! * CoefficientList[Series[(1 - Log[1 - 3*x])^(1/3), {x, 0, m}], x] (* Amiram Eldar, Mar 05 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace((1-log(1-3*x))^(1/3)))
(PARI) a(n) = sum(k=0, n, (-3)^(n-k)*prod(j=0, k-1, -3*j+1)*stirling(n, k, 1));
CROSSREFS
Cf. A352070.
Sequence in context: A249978 A199487 A144041 * A286070 A033908 A033863
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 05 2022
STATUS
approved