login
A378249
Least perfect power > prime(n).
14
4, 4, 8, 8, 16, 16, 25, 25, 25, 32, 32, 49, 49, 49, 49, 64, 64, 64, 81, 81, 81, 81, 100, 100, 100, 121, 121, 121, 121, 121, 128, 144, 144, 144, 169, 169, 169, 169, 169, 196, 196, 196, 196, 196, 216, 216, 216, 225, 243, 243, 243, 243, 243, 256, 289, 289, 289
OFFSET
1,1
COMMENTS
Perfect-powers (A001597) are numbers with a proper integer root, complement A007916.
Which terms appear only once? Just 128, 225, 256, 64009, 1295044?
EXAMPLE
The first number line below shows the perfect powers. The second shows each prime.
-1-----4-------8-9------------16----------------25--27--------32------36------------------------49--
===2=3===5===7======11==13======17==19======23==========29==31==========37======41==43======47======
MATHEMATICA
radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
Table[NestWhile[#+1&, Prime[n], radQ[#]&], {n, 100}]
PROG
(PARI) f(p) = p++; while(!ispower(p), p++); p;
lista(nn) = apply(f, primes(nn)); \\ Michel Marcus, Dec 19 2024
CROSSREFS
A version for prime powers (but starting with prime(k) + 1) is A345531.
Positions of last appearances are A377283, complement A377436.
Restriction of A377468 to the primes, for prime powers A000015.
The opposite is A378035, restriction of A081676.
The union is A378250.
Run lengths are A378251.
A000040 lists the primes, differences A001223.
A000961 lists the powers of primes, differences A057820.
A001597 lists the perfect powers, differences A053289, seconds A376559.
A007916 lists numbers that are not perfect powers, differences A375706, seconds A376562.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A131605 lists perfect powers that are not prime powers.
A377432 counts perfect powers between primes, zeros A377436, postpositives A377466.
Sequence in context: A351838 A377783 A328527 * A145447 A204989 A101921
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 21 2024
STATUS
approved