login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.
12

%I #31 Apr 15 2023 01:51:16

%S 0,1,4,4,8,9,12,11,16,17,20,20,24,25,28,26,32,33,36,36,40,41,44,43,48,

%T 49,52,52,56,57,60,57,64,65,68,68,72,73,76,75,80,81,84,84,88,89,92,90,

%U 96,97,100,100,104,105,108,107,112,113,116,116,120,121,124,120,128

%N a(2n) = a(n) + 2n - 1, a(2n+1) = 4n.

%C Exponent of 2 in tangent numbers A000182.

%C Also, exponent of 2 in the sequences A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.

%C Also, exponent of 2 in 4^(n-1)/n. [_David Brink_, Aug 08 2013]

%H Iain Fox, <a href="/A101921/b101921.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 2n - 2 - A007814(n).

%F a(n) = A007814(A000182(n)).

%F G.f.: Sum_{k>=0} t^2*(1+4*t+t^2)/(1-t^2)^2 where t=x^2^k.

%e G.f. = x^2 + 4*x^3 + 4*x^4 + 8*x^5 + 9*x^6 + 12*x^7 + 11*x^8 + 16*x^9 + 17*x^10 + ...

%t a[n_]:= If[n<1, 0, 2n -2 - IntegerExponent[n, 2]]; (* _Michael Somos_, Mar 02 2014 *)

%o (PARI) a(n)=valuation(4^(n-1)/n,2); \\ _Joerg Arndt_, Aug 13 2013

%o (Sage) [2*n-2 -valuation(n,2) for n in (1..100)] # _G. C. Greubel_, Nov 29 2021

%o (Python)

%o def A101921(n): return (n-1<<1)-(~n & n-1).bit_length() # _Chai Wah Wu_, Apr 14 2023

%Y Cf. A000182, A007814.

%Y Cf. A008775, A009670, A009764, A009798, A012227, A024236, A024277, A024299, A052510.

%K nonn

%O 1,3

%A _Ralf Stephan_, Dec 21 2004