OFFSET
1,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..234
FORMULA
a(n) = - A101922(n). - Michel Marcus, Sep 11 2022
EXAMPLE
E.g.f.: S(x) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! + 103577629*x^13/13! + 8160790429*x^15/15! +...
Related expansions.
S(x)^2 = 2*x^2/2! + 8*x^4/4! - 112*x^6/6! - 9088*x^8/8! - 310528*x^10/10! + 14701568*x^12/12! +...+ -A263249(n)*x^(2*n)/(2*n)! +...
sqrt(1 - S(x)^2) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! +...+ A263247(n)*x^(2*n)/(2*n)! +...
sqrt(1 + S(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(2*n)*x^(2*n)/(2*n)! +...
MATHEMATICA
r:= Sqrt[2]; With[{nmax = 500}, CoefficientList[Series[Sin[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax - 1]!][[2 ;; -1 ;; 2]] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {a(n) = local(S=x, C=1, D=1, ox=O(x^(2*n+2))); for(i=1, 2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D); ); (2*n+1)!*polcoeff(S, 2*n+1)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 13 2015
STATUS
approved