login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263244
Binary representation of the n-th iteration of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.
2
1, 101, 10011, 1011111, 100111111, 10111111111, 1001111111111, 101111111111111, 10011111111111111, 1011111111111111111, 100111111111111111111, 10111111111111111111111, 1001111111111111111111111, 101111111111111111111111111, 10011111111111111111111111111
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 17 2019: (Start)
a(n) = a(n-1)+10000*a(n-2)-10000*a(n-3) for n>3.
G.f.: (1+100*x-90*x^2+1100*x^3) / ((1-x)*(1-100*x)*(1+100*x)).
(End)
Conjecture: a(n) = floor(91*100^((n-1)/2)*10^n/9) for odd n; a(n) = floor(901*100^(n/2 - 1)*10^n/9) for even n. - Karl V. Keller, Jr., May 01 2022
MATHEMATICA
rule=155; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A262861 A371563 A164367 * A368417 A094028 A144564
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved