login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263247
Expansion of e.g.f.: r*cos(r*x) / sqrt(1 + cos(r*x)^2) where r = sqrt(2), even terms only.
4
1, -1, -7, -49, 1457, 148799, 6409193, -436948849, -155175606943, -18245982604801, 1864031151256793, 1627915037217907151, 390178889220670506257, -46784571591411151243201, -89306450512551172914577207, -37461031331532428265812712049, 4204976347690709918899169381057, 17814701962096793952255775890393599
OFFSET
0,3
LINKS
EXAMPLE
E.g.f.: C(x) = 1 - x^2/2! - 7*x^4/4! - 49*x^6/6! + 1457*x^8/8! + 148799*x^10/10! + 6409193*x^12/12! - 436948849*x^14/14! +...
Related expansions.
C(x)^2 = 1 - 2*x^2/2! - 8*x^4/4! + 112*x^6/6! + 9088*x^8/8! + 310528*x^10/10! - 14701568*x^12/12! +...+ A263249(n)*x^(2*n)/(2*n)! +...
sqrt(1 - C(x)^2) = x + x^3/3! - 11*x^5/5! - 491*x^7/7! - 11159*x^9/9! + 460681*x^11/11! +...+ A263246(n)*x^(2*n+1)/(2*n+1)! +...
sqrt(2 - C(x)^2) = 1 + x^2/2! + x^4/4! - 71*x^6/6! - 2591*x^8/8! - 23759*x^10/10! + 7872481*x^12/12! +...+ A263248(n)*x^(2*n)/(2*n)! +...
MATHEMATICA
r:= Sqrt[2]; With[{nmax = 60}, CoefficientList[Series[r*Cos[r*x]/Sqrt[1 + Cos[r*x]^2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 27 2018 *)
PROG
(PARI) {a(n) = local(S=x, C=1, D=1, ox=O(x^(2*n+2))); for(i=1, 2*n+1, S = intformal(C*D^2 +ox); C = 1 - intformal(S*D^2); D = 1 + intformal(S*C*D); ); (2*n)!*polcoeff(C, 2*n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 13 2015
STATUS
approved