login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263250
Even bisection of A263087; number of solutions to x - d(x) = 4(n^2), where d(x) is the number of divisors of x (A000005).
5
2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
OFFSET
0,1
LINKS
FORMULA
a(n) = A263087(2*n).
PROG
(PARI)
A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n), s++); k--; ); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
A263087(n) = A060990(n^2);
A263250(n) = A263087(2*n);
p = 0; for(n=0, 10000, k = A263250(n); p += k; write("b263250.txt", n, " ", k); write("b263252.txt", n, " ", p)); \\ Compute A263250 and A263252 at the same time.
(Scheme) (define (A263250 n) (A263087 (+ n n)))
CROSSREFS
Cf. also A263252 (partial sums).
Sequence in context: A367106 A328084 A351357 * A209287 A025901 A204431
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 07 2015
STATUS
approved