login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209287
Minimal m>=0 such that prime(n)+2*m-1 has form 2^k*p, where k>=0 and p is prime.
1
1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 2, 1, 0, 2, 0, 1, 2, 0, 2, 0, 1, 1, 1, 0, 0, 0, 2, 1, 0, 3, 2, 1, 1, 0, 2, 0, 3, 2, 2, 0, 0, 0, 1, 1, 2, 1, 0, 4, 2, 1, 0, 1, 4, 0, 2, 0, 0, 1, 2, 2, 0, 0, 1, 2, 2, 2, 1, 3, 2, 4, 2, 0
OFFSET
1,20
COMMENTS
Or, for n>2, a(n) is the minimal m>=0 such that the divided on prime(n) sum of prime(n) consecutive integers beginning with m has form 2^k*p, where k>=0 and p is prime.
a(n)=0 if and only if prime(n) is in A074781. - Robert Israel, Mar 18 2019
LINKS
EXAMPLE
Let n=7. Then prime(7)=17 and, for m=0, 17+2m-1=16=2^3*p, where p=2. Thus a(7)=0.
MAPLE
f:= proc(n) local v, m, p;
p:= ithprime(n)-3;
for m from 0 do
p:= p+2;
v:= p/2^padic:-ordp(p, 2);
if v=1 or isprime(v) then return m fi
od;
end proc:
f(1):= 1:
map(f, [$1..100]); # Robert Israel, Mar 18 2019
MATHEMATICA
good[n_] := Module[{k = n/2^IntegerExponent[n, 2]}, n > 1 && (k == 1 || PrimeQ[k])]; Table[p = Prime[n]; m = 0; While[! good[p + 2*m - 1], m++]; m, {n, 87}] (* T. D. Noe, Feb 26 2013 *)
CROSSREFS
Cf. A074781.
Sequence in context: A328084 A351357 A263250 * A025901 A204431 A361509
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 18 2013
EXTENSIONS
More terms from T. D. Noe, Feb 26 2013
STATUS
approved