login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209288
Main diagonal of the quadruple recurrence x(i,j,k,m) = x(i-1,j,k,m) + x(i,j-1,k,m) + x(i,j,k-1,m) + x(i,j,k,m-1) with x(i,j,k,m) = 1 if 0 in {i,j,k,m}.
3
1, 4, 196, 22096, 3323092, 574346824, 107697153304, 21304602938056, 4376897152490644, 924871720044550888, 199731547307306769736, 43887077830441507774336, 9780481173520567895278600, 2205358814500087896152369104, 502225405515985555630557626848
OFFSET
0,2
LINKS
FORMULA
a(n) = x(n,n,n,n) with x(i,j,k,m) = 1 if 0 in {i,j,k,m} and x(i,j,k,m) = x(i-1,j,k,m) + x(i,j-1,k,m) + x(i,j,k-1,m) + x(i,j,k,m-1) else.
a(n) ~ 2^(8*n-1/2) / (27*(Pi*n)^(3/2)). - Vaclav Kotesovec, Sep 07 2014
Recurrence: 2*(n-2)*(n-1)^3*(3*n - 4)*(3*n - 2)*(10773*n^5 - 127620*n^4 + 601635*n^3 - 1410376*n^2 + 1643420*n - 761136)*a(n) = (n-2)*(50320683*n^10 - 922567239*n^9 + 7517570148*n^8 - 35838081882*n^7 + 110640905811*n^6 - 231017836827*n^5 + 330199460678*n^4 - 318795408964*n^3 + 198794448664*n^2 - 72220580288*n + 11590694016)*a(n-1) - 2*(2*n - 3)*(43339779*n^10 - 841711662*n^9 + 7268645808*n^8 - 36726190830*n^7 + 120139923393*n^6 - 265623988980*n^5 + 401575152460*n^4 - 409434087632*n^3 + 269059885664*n^2 - 102737317696*n + 17273392896)*a(n-2) - 16*(2*n - 5)*(2*n - 3)*(3*n - 8)*(3*n - 7)*(4*n - 11)*(4*n - 9)*(10773*n^5 - 73755*n^4 + 198885*n^3 - 263461*n^2 + 170958*n - 43304)*a(n-3). - Vaclav Kotesovec, Sep 12 2016
MAPLE
b:= proc() option remember; `if`(args[1]=0, 1,
add(b(sort(subsop(i=args[i]-1, [args]))[]), i=1..nargs))
end:
a:= n-> b(n$4):
seq(a(n), n=0..15); # Alois P. Heinz, Jan 18 2013
MATHEMATICA
b[] = 0; b[args__] := b[args] = If[{args}[[1]] == 0, 1, Sum[b @@ Sort[ ReplacePart[{args}, i -> {args}[[i]] - 1]], {i, 1, Length[{args}]}]];
a[n_] := b @@ Table[n, 4];
Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Jun 03 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A209245.
Column k=4 of A210472. - Alois P. Heinz, Jan 23 2013
Sequence in context: A221197 A180991 A279803 * A263422 A065246 A297061
KEYWORD
nonn
AUTHOR
Jon Perry, Jan 16 2013
STATUS
approved