login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065246 Formal neural networks with n components. 2
1, 4, 196, 1124864, 12545225621776, 7565068551396549351877632, 11519413104737198429297238164593057431690816, 3940200619639447921227904010014361380507973927046544666794829340424572177149721061141426654884915640806627990306816 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Number of {0,1}^n to {0,1}^n vector-vector maps of which all components are formal neurons (=threshold gates).

REFERENCES

Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272.

Labos E. and Sette M. (1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA.

McCulloch, W. S. and Pitts W. (1943): A Logical Calculus Immanent in Nervous Activity. Bull. Math. Biophys. 5:115-133.

LINKS

Table of n, a(n) for n=0..7.

FORMULA

a(n)=A000609(n)^n; for n>1 a(n) < A057156(n).

EXAMPLE

For n=2 the 14 threshold gates determine 14*14=196 neural nets each built purely from threshold gates. For n=3, 104=A000609(3) formal neurons gives 104^3=a(3) networks, all component functions of which are linearly separable {0,1}^3 -> {0,1} vector-scalar functions.

CROSSREFS

Cf. A000609, A065247, A065248, A064436.

Sequence in context: A279803 A209288 A263422 * A297061 A156235 A034862

Adjacent sequences:  A065243 A065244 A065245 * A065247 A065248 A065249

KEYWORD

nonn

AUTHOR

Labos Elemer, Oct 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 12 21:39 EDT 2021. Contains 344968 sequences. (Running on oeis4.)