Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #5 Oct 15 2013 22:31:08
%S 1,4,196,1124864,12545225621776,7565068551396549351877632,
%T 11519413104737198429297238164593057431690816,
%U 3940200619639447921227904010014361380507973927046544666794829340424572177149721061141426654884915640806627990306816
%N Formal neural networks with n components.
%C Number of {0,1}^n to {0,1}^n vector-vector maps of which all components are formal neurons (=threshold gates).
%D Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272.
%D Labos E. and Sette M. (1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA.
%D McCulloch, W. S. and Pitts W. (1943): A Logical Calculus Immanent in Nervous Activity. Bull. Math. Biophys. 5:115-133.
%F a(n)=A000609(n)^n; for n>1 a(n) < A057156(n).
%e For n=2 the 14 threshold gates determine 14*14=196 neural nets each built purely from threshold gates. For n=3, 104=A000609(3) formal neurons gives 104^3=a(3) networks, all component functions of which are linearly separable {0,1}^3 -> {0,1} vector-scalar functions.
%Y Cf. A000609, A065247, A065248, A064436.
%K nonn
%O 0,2
%A _Labos Elemer_, Oct 26 2001