login
A025901
Expansion of 1/((1-x^6)*(1-x^7)*(1-x^12)).
6
1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 1, 0, 0, 0, 2, 2, 1, 1, 0, 0, 3, 2, 2, 1, 1, 0, 3, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 6, 5, 4, 3, 3, 2, 7, 6, 5, 4, 3, 3, 8, 7, 6, 5, 4, 3, 9, 8, 7, 6, 5, 4, 10, 9, 8, 7, 6, 5, 11, 10
OFFSET
0,13
COMMENTS
a(n) is the number of partitions of n into parts 6, 7, and 12. - Michel Marcus, Jan 23 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,1,0,0,0,0,1,-1,0,0,0,0,-1,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^6)(1-x^7)(1-x^12)), {x, 0, 100}], x] (* Harvey P. Dale, Nov 27 2020 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^7)*(1-x^(12))) )); // G. C. Greubel, Jan 23 2024
(SageMath)
def A025901_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^7)*(1-x^(12)))).list()
A025901_list(100) # G. C. Greubel, Jan 23 2024
KEYWORD
nonn
STATUS
approved