login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025904
Expansion of 1/((1-x^6)*(1-x^9)*(1-x^10)).
2
1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 1, 4, 2, 2, 3, 3, 1, 4, 2, 2, 4, 4, 2, 5, 3, 3, 4, 4, 2, 6, 4, 4, 5, 5, 3, 7, 4, 4, 6, 6, 4, 8, 5, 5, 7, 7, 4, 9, 6, 6, 8, 8, 5, 10, 7
OFFSET
0,19
COMMENTS
a(n) is the number of partitions of n into parts 6, 9, and 10. - Michel Marcus, Jan 24 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1,0,0,1,1,0,0,0,0,-1,-1,0,0,-1,0,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^6)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* Harvey P. Dale, Jun 09 2019 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^6)*(1-x^9)*(1-x^10)) )); // G. C. Greubel, Jan 23 2024
(SageMath)
def A025904_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^6)*(1-x^9)*(1-x^10)) ).list()
A025904_list(100) # G. C. Greubel, Jan 23 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved