OFFSET
0,19
COMMENTS
An integer partition of n is complete (ranks A325781) if every integer from 0 to n is the sum of some submultiset of the parts.
EXAMPLE
Triangle begins:
1
0 1
0 0 1
0 0 1 1
0 0 0 1 1
0 0 0 2 1 1
0 0 0 1 2 1 1
0 0 0 1 3 2 1 1
0 0 0 0 3 3 2 1 1
0 0 0 0 4 5 3 2 1 1
0 0 0 0 3 5 5 3 2 1 1
0 0 0 0 4 8 7 5 3 2 1 1
0 0 0 0 2 9 9 7 5 3 2 1 1
0 0 0 0 2 11 12 11 7 5 3 2 1 1
0 0 0 0 1 11 16 13 11 7 5 3 2 1 1
0 0 0 0 1 14 21 19 15 11 7 5 3 2 1 1
Row n = 11 counts the following partitions (empty columns not shown):
6311 62111 611111 5111111 41111111 311111111 2111111111 11111111111
6221 53111 521111 4211111 32111111 221111111
5321 52211 431111 3311111 22211111
4421 44111 422111 3221111
43211 332111 2222111
42221 322211
33311 222221
33221
MATHEMATICA
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n, {k}], nmz[#]=={}&]], {n, 0, 15}, {k, 0, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 09 2023
STATUS
approved