login
A367106
Triangle read by rows where T(n,k) is the number of complete length-k integer partitions of n.
0
1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 2, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 0, 3, 3, 2, 1, 1, 0, 0, 0, 0, 4, 5, 3, 2, 1, 1, 0, 0, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 0, 0, 4, 8, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 2, 9, 9, 7, 5
OFFSET
0,19
COMMENTS
An integer partition of n is complete (ranks A325781) if every integer from 0 to n is the sum of some submultiset of the parts.
EXAMPLE
Triangle begins:
1
0 1
0 0 1
0 0 1 1
0 0 0 1 1
0 0 0 2 1 1
0 0 0 1 2 1 1
0 0 0 1 3 2 1 1
0 0 0 0 3 3 2 1 1
0 0 0 0 4 5 3 2 1 1
0 0 0 0 3 5 5 3 2 1 1
0 0 0 0 4 8 7 5 3 2 1 1
0 0 0 0 2 9 9 7 5 3 2 1 1
0 0 0 0 2 11 12 11 7 5 3 2 1 1
0 0 0 0 1 11 16 13 11 7 5 3 2 1 1
0 0 0 0 1 14 21 19 15 11 7 5 3 2 1 1
Row n = 11 counts the following partitions (empty columns not shown):
6311 62111 611111 5111111 41111111 311111111 2111111111 11111111111
6221 53111 521111 4211111 32111111 221111111
5321 52211 431111 3311111 22211111
4421 44111 422111 3221111
43211 332111 2222111
42221 322211
33311 222221
33221
MATHEMATICA
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
Table[Length[Select[IntegerPartitions[n, {k}], nmz[#]=={}&]], {n, 0, 15}, {k, 0, n}]
CROSSREFS
Column k appears to have A000325(k) nonzero terms.
Column sums are A003513.
Central column T(2n,n) is A007042.
Row sums are A126796, ranks A325781.
The strict case is too sparse, row sums A188431 (complement A365831).
Grouping by maximum instead of length gives A261036.
A000041 counts integer partitions.
A108917 counts knapsack partitions, ranks A299702.
A299701 counts subset-sums of prime indices, firsts A259941.
A365924 counts incomplete partitions, ranks A365830.
Sequence in context: A340391 A076879 A225230 * A328084 A351357 A263250
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 09 2023
STATUS
approved