login
A225230
In the canonical prime factorization of n: (number of distinct primes) minus (largest prime exponent).
7
0, 0, 0, -1, 0, 1, 0, -2, -1, 1, 0, 0, 0, 1, 1, -3, 0, 0, 0, 0, 1, 1, 0, -1, -1, 1, -2, 0, 0, 2, 0, -4, 1, 1, 1, 0, 0, 1, 1, -1, 0, 2, 0, 0, 0, 1, 0, -2, -1, 0, 1, 0, 0, -1, 1, -1, 1, 1, 0, 1, 0, 1, 0, -5, 1, 2, 0, 0, 1, 2, 0, -1, 0, 1, 0, 0, 1, 2, 0, -2, -3
OFFSET
1,8
LINKS
FORMULA
a(n) = A001221(n) - A051903(n).
a(A212164(n)) < 0; a(A212165(n)) <= 0; a(A212166(n)) = 0; a(A188654(n)) <> 0; a(A212167(n)) >= 0; a(A212168(n)) > 0.
MATHEMATICA
a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Length[e] - Max[e]]; Array[a, 100] (* Amiram Eldar, Sep 09 2024 *)
PROG
(Haskell)
a225230 n = a001221 n - a051903 n
(PARI) a(n) = if (n>1, my(f=factor(n)); #f~ - vecmax(f[, 2]), 0); \\ Michel Marcus, Jan 26 2022
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, May 03 2013
STATUS
approved