login
A225231
Schur numbers S(3,n).
2
9, 16, 23, 37, 53, 71, 93, 119, 147, 177, 211, 249, 289, 331, 377, 427, 479, 533, 591, 653, 717, 783, 853, 927, 1003, 1081, 1163, 1249, 1337, 1427, 1521, 1619, 1719, 1821, 1927, 2037, 2149, 2263, 2381, 2503, 2627, 2753, 2883, 3017, 3153, 3291, 3433
OFFSET
3,1
COMMENTS
a(n) is, by definition, the least positive m such that if {1,...,m} is written as a disjoint union of sets A and B, then either A contains 3 distinct numbers, one the sum of the other two, or B contains n distinct numbers, one the sum of the other n - 1.
LINKS
Tanbir Ahmed, Michael G. Eldredge, Jonathan J. Marler, and Hunter S. Snevily, Strict Schur Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A22, 2013.
FORMULA
For n >= 5, a(n) = 3n^2/2 - 7n/2 + c, where c = 3 if n == 0,1 (mod 4), else c = 4.
G.f.: x^3*(3*x^6-7*x^5+3*x^4+4*x^3-11*x^2+11*x-9) / ((x-1)^3*(x^2+1)). - Colin Barker, May 16 2013
MATHEMATICA
Join[{9, 16}, LinearRecurrence[{3, -4, 4, -3, 1}, {23, 37, 53, 71, 93}, 45]] (* Ray Chandler, Feb 13 2014 *)
PROG
(Sage) def A225231(n) : return 9 if n == 3 else 16 if n == 4 else (3*n^2 - 7*n)//2 + [3, 3, 4, 4][n%4]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, May 03 2013
STATUS
approved