OFFSET
3,1
COMMENTS
a(n) is, by definition, the least positive m such that if {1,...,m} is written as a disjoint union of sets A and B, then either A contains 3 distinct numbers, one the sum of the other two, or B contains n distinct numbers, one the sum of the other n - 1.
LINKS
Eric M. Schmidt, Table of n, a(n) for n = 3..1000
Tanbir Ahmed, Michael G. Eldredge, Jonathan J. Marler, and Hunter S. Snevily, Strict Schur Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A22, 2013.
Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-3,1).
FORMULA
For n >= 5, a(n) = 3n^2/2 - 7n/2 + c, where c = 3 if n == 0,1 (mod 4), else c = 4.
G.f.: x^3*(3*x^6-7*x^5+3*x^4+4*x^3-11*x^2+11*x-9) / ((x-1)^3*(x^2+1)). - Colin Barker, May 16 2013
MATHEMATICA
Join[{9, 16}, LinearRecurrence[{3, -4, 4, -3, 1}, {23, 37, 53, 71, 93}, 45]] (* Ray Chandler, Feb 13 2014 *)
PROG
(Sage) def A225231(n) : return 9 if n == 3 else 16 if n == 4 else (3*n^2 - 7*n)//2 + [3, 3, 4, 4][n%4]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric M. Schmidt, May 03 2013
STATUS
approved