login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A080895
Expansion of the exponential series exp( x R(x) ) = exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))), where R(x) is the ordinary generating series of the Riordan numbers A005043.
0
1, 1, 1, 7, 49, 541, 7321, 122011, 2390977, 54027289, 1382140081, 39493358191, 1246693438321, 43087256236597, 1618203187947529, 65621724413560771, 2857736621103221761, 133014764141210620081, 6589916027200886776417
OFFSET
0,4
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
FORMULA
E.g.f.: exp((1 + x - sqrt(1 - 2 x - 3x^2))/(2(1 + x))).
a(n) = (n-1)!*Sum_{k=1..n} ((Sum_{j=k..n} C(n,j)*C(2*j-k-1, j-1)*(-1)^(n-j))/(k-1)!), n > 0. - Vladimir Kruchinin, Sep 07 2010
a(n) ~ sqrt(2)*3^(n + 1/2)*n^(n-1)/(8*exp(n - 1/2)). - Vaclav Kotesovec, Sep 29 2013
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y(0)=1, y(1)=1, y(2)=1/2, y(3)=7/6,
Let -3n*(1+n)*y(n) - (12+20n+8n^2)*y(n+1) - (25+24n+6n^2)*y(n+2)+(n+3)*(n+4)*y(n+4) = 0,
a(n) = n!*y(n).
(End)
MATHEMATICA
a[n_] := (n-1)!*Sum[ ((-1)^(n+k)*Binomial[n, k]* HypergeometricPFQ[ {k/2 + 1/2, k/2, k-n}, {k, k+1}, 4])/(k-1)!, {k, 1, n}]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 20 2011, after Vladimir Kruchinin *)
PROG
(Maxima) a(n):=(n-1)!*sum(sum(binomial(n, j)*binomial(2*j-k-1, j-1)*(-1)^(n-j), j, k, n)/(k-1)!, k, 1, n); /* Vladimir Kruchinin, Sep 07 2010 */
CROSSREFS
Cf. A005043.
Sequence in context: A349117 A125796 A135745 * A047899 A229041 A263247
KEYWORD
easy,nice,nonn
AUTHOR
Emanuele Munarini, Mar 31 2003
STATUS
approved