login
A080893
Expansion of e.g.f. exp(x*C(x)) = exp((1-sqrt(1-4*x))/2), where C(x) is the g.f. of the Catalan numbers A000108.
13
1, 1, 3, 19, 193, 2721, 49171, 1084483, 28245729, 848456353, 28875761731, 1098127402131, 46150226651233, 2124008553358849, 106246577894593683, 5739439214861417731, 332993721039856822081, 20651350143685984386753
OFFSET
0,3
COMMENTS
Essentially the same as A001517: a(n+1) = A001517(n).
For k >= 2, the difference a(n+k) - a(n) is divisible by k. It follows that for each k, the sequence formed by taking a(n) modulo k is periodic with period dividing k. For example, modulo 10 the sequence becomes [1, 1, 3, 9, 3, 1, 1, 3, 9, 3, ...], a purely periodic sequence of period 5. Cf. A047974. - Peter Bala, Feb 11 2025
LINKS
W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
E.g.f.: exp((1-sqrt(1-4*x))/2).
D-finite with recurrence: a(n+2) = 2*(2*n + 1)*a(n+1) + a(n).
Recurrence: y(n+1) = Sum_{k = 0..n} binomial(n, k)*binomial(2k, k)*k!*y(n-k).
a(1 - n) = a(n). a(n + 1) = A001517(n). - Michael Somos, Apr 07 2012
G.f.: 1 + x/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)/exp(n-1/2). - Vaclav Kotesovec, Jun 26 2013
a(n) = hypergeom([-n+1, n], [], -1). - Peter Luschny, Oct 17 2014
a(n) = Sum_{k=0..n} (-4)^(n-k) * Stirling1(n,k) * A009235(k) = (-4)^n * Sum_{k=0..n} (1/2)^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Aug 02 2024
MATHEMATICA
y[x_] := y[x] = 2(2x - 3)y[x - 1] + y[x - 2]; y[0] = 1; y[1] = 1; Table[y[n], {n, 0, 17}]
With[{nn=20}, CoefficientList[Series[Exp[(1-Sqrt[1-4x])/2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 30 2011 *)
PROG
(PARI) {a(n) = if( n<1, n = 1 - n); n! * polcoeff( exp( (1 - sqrt(1 - 4*x + x * O(x^n))) / 2), n)} /* Michael Somos, Apr 07 2012 */
(Sage)
A080893 = lambda n: hypergeometric([-n+1, n], [], -1)
[simplify(A080893(n)) for n in (0..19)] # Peter Luschny, Oct 17 2014
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Emanuele Munarini, Mar 31 2003
STATUS
approved