OFFSET
0,3
COMMENTS
For k >= 2, the difference a(n+k) - a(n) is divisible by k. It follows that for each k, the sequence formed by taking a(n) modulo k is periodic with period dividing k. For example, modulo 10 the sequence becomes [1, 1, 3, 9, 3, 1, 1, 3, 9, 3, ...], a purely periodic sequence of period 5. Cf. A047974. - Peter Bala, Feb 11 2025
LINKS
W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
E.g.f.: exp((1-sqrt(1-4*x))/2).
D-finite with recurrence: a(n+2) = 2*(2*n + 1)*a(n+1) + a(n).
Recurrence: y(n+1) = Sum_{k = 0..n} binomial(n, k)*binomial(2k, k)*k!*y(n-k).
a(1 - n) = a(n). a(n + 1) = A001517(n). - Michael Somos, Apr 07 2012
G.f.: 1 + x/Q(0), where Q(k)= 1 - x - 2*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 17 2013
a(n) ~ 2^(2*n-3/2)*n^(n-1)/exp(n-1/2). - Vaclav Kotesovec, Jun 26 2013
a(n) = hypergeom([-n+1, n], [], -1). - Peter Luschny, Oct 17 2014
a(n) = Sum_{k=0..n} (-4)^(n-k) * Stirling1(n,k) * A009235(k) = (-4)^n * Sum_{k=0..n} (1/2)^k * Stirling1(n,k) * Bell_k(-1/2), where Bell_n(x) is n-th Bell polynomial. - Seiichi Manyama, Aug 02 2024
MATHEMATICA
y[x_] := y[x] = 2(2x - 3)y[x - 1] + y[x - 2]; y[0] = 1; y[1] = 1; Table[y[n], {n, 0, 17}]
With[{nn=20}, CoefficientList[Series[Exp[(1-Sqrt[1-4x])/2], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 30 2011 *)
PROG
(PARI) {a(n) = if( n<1, n = 1 - n); n! * polcoeff( exp( (1 - sqrt(1 - 4*x + x * O(x^n))) / 2), n)} /* Michael Somos, Apr 07 2012 */
(Sage)
A080893 = lambda n: hypergeometric([-n+1, n], [], -1)
[simplify(A080893(n)) for n in (0..19)] # Peter Luschny, Oct 17 2014
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
Emanuele Munarini, Mar 31 2003
STATUS
approved