login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263245
Decimal representation of the n-th iteration of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.
2
1, 5, 19, 95, 319, 1535, 5119, 24575, 81919, 393215, 1310719, 6291455, 20971519, 100663295, 335544319, 1610612735, 5368709119, 25769803775, 85899345919, 412316860415, 1374389534719, 6597069766655, 21990232555519, 105553116266495, 351843720888319
OFFSET
0,2
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 17 2019: (Start)
a(n) = a(n-1)+16*a(n-2)-16*a(n-3) for n>3.
G.f.: (1+4*x-2*x^2+12*x^3) / ((1-x)*(1-4*x)*(1+4*x)).
(End)
Empirical a(n) = (11*4^n-(-4)^n-8)/8 for n>0. - Colin Barker, Nov 25 2016 and Apr 17 2019
Conjecture: a(n) = 3*4^((n-1)/2)*2^n - 1 for odd n; a(n) = 5*4^(n/2 - 1)*2^n - 1 for even n > 0. - Karl V. Keller, Jr., May 01 2022
MATHEMATICA
rule=155; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]], 2], {k, 1, rows}] (* Decimal Representation of Rows *)
CROSSREFS
Sequence in context: A149808 A371836 A149809 * A346199 A020050 A106958
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved