Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 27 2024 20:31:37
%S 1,5,19,95,319,1535,5119,24575,81919,393215,1310719,6291455,20971519,
%T 100663295,335544319,1610612735,5368709119,25769803775,85899345919,
%U 412316860415,1374389534719,6597069766655,21990232555519,105553116266495,351843720888319
%N Decimal representation of the n-th iteration of the "Rule 155" elementary cellular automaton starting with a single ON (black) cell.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
%H Robert Price, <a href="/A263245/b263245.txt">Table of n, a(n) for n = 0..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, Jan 20 2016 and Apr 17 2019: (Start)
%F a(n) = a(n-1)+16*a(n-2)-16*a(n-3) for n>3.
%F G.f.: (1+4*x-2*x^2+12*x^3) / ((1-x)*(1-4*x)*(1+4*x)).
%F (End)
%F Empirical a(n) = (11*4^n-(-4)^n-8)/8 for n>0. - _Colin Barker_, Nov 25 2016 and Apr 17 2019
%F Conjecture: a(n) = 3*4^((n-1)/2)*2^n - 1 for odd n; a(n) = 5*4^(n/2 - 1)*2^n - 1 for even n > 0. - _Karl V. Keller, Jr._, May 01 2022
%t rule=155; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
%Y Cf. A263243, A263244.
%K nonn,easy
%O 0,2
%A _Robert Price_, Jan 17 2016